

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
MATHEMATICS	S (SYLLABUS D)	4024/01
Paper 1		May/June 2007
		2 nours
Candidates ans	wer on the Question Paper.	
Additional Mate	rials: Geometrical instruments	
	CANDIDATE NAME CENTRE NUMBER MATHEMATICS Paper 1 Candidates ans Additional Mate	CANDIDATE NAME CENTRE NUMBER CANDIDATE NUMBER CANDIDATE N

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use				

This document consists of **15** printed pages and **1** blank page.

2

https://xtremepape.rs/

For Examiner's		3					
Use	4	(a)	A car decelerates uniformly from 20 m/s to 5 m/s in 25 seconds. Calculate the retardation.	Use			
		(b)	Express 20 metres per second in kilometres per hour.				
			Answer (a) m/s^2 [1]				
			(<i>b</i>) km/h [1]				
	5	(a)	Write the following in order of size, starting with the smallest.				
			$\frac{66}{100}$ 0.6 0.67 $\frac{666}{1000}$				
			Answer (a), ,, ,, [1] smallest				
		(b)	The distance of Saturn from the Sun is 1507 million kilometres. Express 1507 million in standard form.				
			Answer (b)[1]				
	6	(a)	Express 154 as the product of its prime factors.				
		(b)	Find the lowest common multiple of 154 and 49.				
			Answer (a)[1]				
			<i>(b)</i> [1]				

For Examiner's		4					
Use	7	In the quadrilateral <i>ABCD</i> , $\hat{A} = x^{\circ}$, $\hat{B} = 2x^{\circ}$, $\hat{C} = 3x^{\circ}$ and $\hat{D} = 4x^{\circ}$.	Use				
		(a) Find x .					
		(b) Explain why <i>AB</i> is parallel to <i>DC</i> .					
		Answer (a) $x =$					
		<i>(b)</i> [1]					
	8	On the grid in the answer space, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.					
		(a) Given that $\overrightarrow{OR} = \mathbf{p} - \mathbf{q}$, mark the point <i>R</i> clearly on the grid.					
		(b) The point <i>S</i> is shown on the grid.					
		Given that $\overrightarrow{OS} = \mathbf{q} + h\mathbf{p}$, find h.					
		Answer (a)					
		S Q					
		[1]					
		(b) $h =$					

https://xtremepape.rs/

ner's			8	Fa Exami
^e 1	14	In the diagram, <i>ABCD</i> is a diameter of the ci AB = BC = CD = 2x centimetres.	ircle centre <i>P</i> .	Us
		(a) Find an expression, in terms of x and π , circumference of this circle.	, for the $2x$ P $2x$ z	
		(b) The perimeter of the shaded region con two semicircles whose diameters are <i>Ai</i> and two semicircles whose diameters are	A bisists of B and CD , re AC and BD .	
		Find an expression, in terms of x and π , area of the shaded region.	, for the	
			Answer (a)cm [1]	
_			(b) cm^2 [2]	
1	15	In the diagram, <i>BCDE</i> is a trapezium, and th <i>CD</i> and <i>BE</i> are produced to meet at <i>A</i> . CB = 12 cm, DE = 9 cm and the perpendicular distance from <i>D</i> to <i>CB</i> is 4 cm.	ar A	
		Calculate		
		(a) the area of <i>BCDE</i> ,		
		(b) the perpendicular distance from <i>A</i> to <i>C</i> .	$D = \frac{9}{E}$	
			$C \longrightarrow B$	
			12	
			12	
			12	
			Answer (a)	

For Examiner's	10	For Examiner's
Use	19	Use
	 The diagram shows a circle, centre C, of radius 5 cm, and a circle, centre A, of radius 3 cm. The circles intersect at X and Y. B is a point such that AB = 5 cm and BC = 3 cm. (a) Show that triangles ABC and CYA are congruent. 	
	(b) Show that the areas of the quadrilaterals <i>ABCX</i> and <i>AYCX</i> are equal. <i>Answer</i> (b)	
	(c) State the name of the special quadrilateral <i>AYCX</i> .	
	[1]	

20 The plan of a field has a scale of 1 cm to 5 metres.

(a) Express this scale in the form 1 : *n*.

Answer (a)[1]

(b) The plan was made by measuring angles from two points, A and B, 50 m apart. The line AB is drawn to scale in the answer space below.

(i) A tree is at the point *T* in the field. $B\hat{A}T = 35^{\circ}$ and $A\hat{B}T = 70^{\circ}$.

Locate and label *T* on the plan.

- (ii) Given that A is due west of B, state the bearing of T from B.
- (iii) By making an appropriate measurement, find the actual distance, in metres, of the tree from B.

Answer (b)(i)

Ν

A		В	[1]
	Answer (b)(ii)	 	. [1]
	(iii)	 n	n [1]

For For 12 Examiner's Examiner's Use Use 21 Factorise (a) $2x^2 - 7x - 15$, (b) 2yt - 8ys - zt + 4zs. Answer (a)[2] *(b)*[2] (a) Solve 22 (i) 9-k < 7, (ii) $\frac{5}{2t} = \frac{1}{12}$. x + y = 29,4x = 95 - 2y.(b) Solve the simultaneous equations Answer (a) (i)[1] (ii) *t* =[1] (*b*) $x = \dots$ [3]

23

(a)

	sin	cos
30°	0.5	0.87
60°	0.87	0.5

13

Using as much information in the table as necessary, evaluate 2sin150°.

Answer (a).....[1]

(b)

In the triangle ABC, $A\hat{B}C = 90^\circ$, AB = 3x cm, BC = (x + 1) cm and AC = (3x + 1) cm.

r+1

3x

B

3*x*+1

(i) Form an equation in x and show that it reduces to $x^2 - 4x = 0$.

D

24 (a) Evaluate
$$\begin{pmatrix} 12\\4\\6 \end{pmatrix} - 3 \begin{pmatrix} 3\\-1\\2 \end{pmatrix}$$

Answer (a)
$$\left(\begin{array}{c} \\ \end{array}\right)$$
 [1]

(b) A business makes toy buses and toy lorries. The following table is used in calculating the cost of making each toy.

	Labour (hours)	Wood (blocks)	Paint (tins)
Bus	2	3	1
Lorry	1	w	2

Labour costs \$10 per hour, wood costs \$1 per block and paint costs \$p per tin.

The information above can be summarised in the matrices A and B,

where
$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & w & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 10 \\ 1 \\ p \end{pmatrix}$.
(i) Given that $\mathbf{AB} = \begin{pmatrix} 28 \\ 24 \end{pmatrix}$, find
(a) p ,
(b) w .
(ii) Evaluate $(100 \ 200) \begin{pmatrix} 28 \\ 24 \end{pmatrix}$.
(iii) Explain what your answer to (ii) represents.
Answer

 $r(b)(i)(a) p = \dots [1]$ (*b*) $w = \dots [1]$ (ii)[1] (iii)......[1]

4024/01/M/J/07

The results are summarised in the table below.

Height (<i>h</i> cm)	$105 < h \le 115$	$115 < h \le 125$	$125 < h \le 135$	$135 < h \le 145$
Frequency	5	10	20	5

(a) (i) Identify the modal class.

(ii) Calculate an estimate of the mean height.

- Answer (a)(i)[1]
 - (ii)cm [3]
- (b) The cumulative frequency curve representing this information is shown below.

https://xtremepape.rs/

4024/01/M/J/07

BLANK PAGE

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.